Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Microbiol ; 80(11): 352, 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37737960

RESUMO

Klebsiella pneumoniae carbapenemase (KPC) is a crucial enzyme that causes carbapenem resistance in Enterobacterales, and infections by these "superbugs" are extremely challenging to treat. Therefore, there is a pressing need for a rapid and accurate KPC detection test to control the prevalence of carbapenem-resistant Enterobacterales (CREs). In this study, we established a novel method for detection of blaKPC, the gene responsible for encoding KPC, based on a recombinase polymerase amplification (RPA) and a CRISPR/Cas13a reaction coupled to fluorophore activation (termed RPA-Cas13a assay). We carefully selected a pair of optimal amplification primers for blaKPC and achieved a lower limit of detection of approximately 2.5 copies/µL by repeatedly amplifying a recombinant plasmid containing blaKPC. The RPA-Cas13a assay demonstrated a sensitivity of 96.5% and specificity of 100% when tested on 57 blaKPC-positive CRE strains, which were confirmed by DNA sequencing. Moreover, in 311 sputum samples, the theoretical antibiotic resistance characteristics of blaKPC-positive strains obtained by the RPA-Cas13a assay were highly consistent with the results of antibiotic susceptibility test (Kappa = 0.978 > 0.81, P < 0.01). In conclusion, the RPA-Cas13a system is a simple and one-hour efficient technology for the detection of a potentially fatal antibiotic resistance gene.


Assuntos
Gammaproteobacteria , Klebsiella pneumoniae , Klebsiella pneumoniae/genética , Carbapenêmicos/farmacologia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Proteínas de Bactérias/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...